合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 触杀型除草剂与油类助剂防除杂草机理及效果
> 电晕对BOPP薄膜表面张力、化学结构、元素组成的影响
> 表面活性剂是否对斥水性土壤的润湿性有影响?——材料和方法
> 基于遗传算法优化提高界面张力的预测速度和精度
> 高沸点表面活性剂对纳米LiBr溶液表面张力沸腾温度的影响(上)
> β-乳球蛋白质纳米纤维制备及界面吸附和界面流变行为分析——结果与分析、结论
> 接触角迟滞时气~液界面张力的温度敏感性对液滴蒸发过程的影响——结果分析、结论
> 高分子表面活性剂HS-PA表征和性能、粒径、表面张力、应用性能测定——实验部分
> 液体表面张力方向究竟是沿着页面切线方向,还是垂直于页面指向液体内部?
> 铝酸镧基片上沉积制备纳尺度的铜薄膜,榴莲视频APP最新版安装精准测量沉积质量
推荐新闻Info
-
> Layzer模型与Zufiria模型研究界面张力对Rayleigh-Taylor气泡不稳定性的影响
> 深过冷Ni-15%Sn合金熔体表面张力的实验研究与应用前景
> 表面张力在微孔曝气法制备微气泡中的核心作用——基于实验研究的深度解析
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(三)
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(二)
> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(一)
> 榴莲视频APP最新版安装比普通电子天平“好”在哪?
> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(四)
> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(三)
> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(二)
榴莲视频APP下载最新版本应用:研究活性磁化水对无烟煤尘的湿润作用(二)
来源:北京理工大学学报 浏览 1006 次 发布时间:2025-03-06
3结果与讨论
3.1煤的湿润性
图1为本实验所选煤样的接触角测试结果图,由图可以看出,煤样的接触角为74.2°,相较于其他类型的煤(接触角为20.55°,22.34°,34.23°和29.75°),其接触角明显偏大,具有较强的疏水性。
图1煤样的接触角测试结果图
表1为煤样的工业分析结果,其水分为1.97%.根据XU等的研究结论,煤尘的水分越大,湿润性越好,其实验所用煤样的水分分别为1.44,1.84,1.28,3.71,1.42,5.83,5.52,6.17.与之相较,所选煤样水分小于2%,为低水分煤样,湿润性较差。
表1煤样的工业分析
3.2不同表面活性剂溶液的湿润性
如图2所示,4种溶液随着浓度的增加,表面张力逐渐趋于稳定。十二烷基磺酸钠溶液质量分数大于0.20%时,溶液表面张力趋于稳定。表面张力最小时,溶液质量分数为0.30%.十二烷基硫酸钠(SDS)溶液质量分数大于0.05%时,溶液表面张力趋于稳定。表面张力最小时,溶液质量分数为0.15%.十二烷基苯磺酸钠(SDBS)质量分数大于0.15%时,溶液表面张力趋于稳定。表面张力最小时,溶液质量分数为0.30%.尘克C&C溶液质量分数大于0.05%时,溶液表面张力趋于稳定。表面张力最小时,溶液质量分数为0.10%.由图可以看出,相较于十二烷基苯磺酸钠(SDBS)和十二烷基磺酸钠,十二烷基硫酸钠(SDS)和尘克C&C可以较大程度地降低溶液的表面张力,提高溶液对低水分无烟煤颗粒的湿润性。同时,考虑到尘克C&C溶液具有无腐蚀、无污染、可生物降解、不造成二次污染的特性,最终选择质量分数0.10%尘克C&C溶液作为最优表面活性溶液。
图2不同溶剂溶液的表面张力
3.3溶液表面张力随磁化强度的变化
如图3所示,磁化5 min后的矿井静压水和质量分数0.10%尘克C&C溶液表面张力会降低,最大降低幅度分别为7.28%和7.54%.最佳磁场强度均为300 mT.
图3不同磁化强度条件下矿井静压水与质量分数0.10%尘克C&C溶液的表面张力
无论矿井静压水还是质量分数0.10%尘克C&C溶液,随着磁场强度的增加,其溶液表面张力先减小后增大。这是因为磁场的施加可使溶液发生三方面的变化,分别是:①磁场可破碎水分子簇,使之成为许多小分子体,从而减弱其表面张力。②磁场可使溶液分子之间的氢键断裂,使得溶液具有更强的极性,更容易与煤表面的悬键结合,从而湿润煤体。③适当的磁场会使得溶液表面的亲水基团更加致密,从而增强溶液的湿润性。磁场强度的增加,使得这三方面的影响逐渐增大,表现为溶液的表面张力逐渐减小。然而,过度的磁化可使溶液表面的亲水基团脱落,使得溶液湿润性变差,表现为过度磁化后溶液表面张力逐渐增加。
由图3可知,质量分数0.10%尘克C&C溶液的表面张力为33.2 mN/m.加入质量分数0.10%尘克C&C试剂,使得溶液表面张力由59.1 mN/m下降到33.2 mN/m,下降幅度为43.82%.磁化强度为300 mT,磁化5 min的矿井静压水的表面张力为54.8 mN/m.最佳磁化强度下,矿井静压水的表面张力由59.1 mN/m下降到54.8 mN/m,下降幅度为7.28%.由此可知,与试剂对溶液湿润性的提升效果相比,磁化作用对溶液湿润性的提升较小。
3.4溶液表面张力随磁化时间的变化
确定最优磁化时间,对磁化装置设计及经过磁化装置时的流量参数控制很重要。如图4(a)所示,在300 mT的磁化强度下,磁化时间超过60 s时,矿井静压水和质量分数0.10%尘克C&C溶液表面张力逐渐趋于稳定。磁化强度为300 mT,磁化时间60 s时,矿井静压水和质量分数0.10%尘克C&C溶液表面张力最小,分别为52.0,31.5 mN/m.
图4不同磁化时间下矿井静压水与质量分数0.10%尘克C&C溶液的表面张力
为了确定最优磁化时间,分别测定了磁场强度为300 mT,磁化时间为30,40,50,60,70,80,90 s时的溶液表面张力。由图4(b)可以看出,磁化时间在30——90 s范围内,矿井静压水的表面张力波动性变化,磁化时间为60 s时,矿井静压水的表面张力最小。而质量分数0.10%尘克C&C溶液的表面张力在50 s时有一个明显的拐点,之后表面张力趋于稳定。拐点处,质量分数0.10%尘克C&C溶液表面张力最小。磁场强度为300 mT,质量分数0.10%的尘克C&C溶液的最佳磁化时间为50 s.
榴莲视频APP下载最新版本应用:研究活性磁化水对无烟煤尘的湿润作用(一)





